Monday, August 28, 2017

How to speed up your Oracle Data Mining with in-memory and parallel

Have you have found running a workflow in Oracle Data Miner slow or running the scripts in the database slow ?

No. Good, because I haven't found it slow.

But (there is always a but) it really depends on the volume of data your are dealing with. For the vast majority of us who aren't of the size of google, amazon, etc have data volumes that are not that large really and a basic server can process many millions of records extremely quickly using Oracle Data Mining.

But what if we have a large volume of data. In one recent project I had a data set containing over 3.5 billion records. Now that is big data. All of this data sitting in an Oracle Database.

So how can we process over 3.5 billion records in a couple of seconds, building 4 machine learning models in that time? Is that really possible with just using an Oracle Database? Yes is the answer and very easily. (Surely I needed Hadoop and Spark to process this data? Nope!)

The Oracle Data Miner (ODMr) tool comes with a new feature in SQL Developer 4 (and higer) that allows you to manage using Parallel execution and the in-memory DB features. These can be accessed on the ODMr Worksheet tool bar.

NewImage

The best time to look at these setting is when you have created your workflow and are ready to run it for the first time. When you click on the 'Performance Options' link, you will get the following window. It will display the list of nodes you have in the workflow and will then indicate if the Degree of Parallel and the In-Memory options can be set for each of the nodes.

NewImage

The default values are shown and you can changes these. For example, in a lot of scenarios you might prefer to leave the Degree of Parallel as System Determined. This will then use whatever the the default is for the database and controlled by the DBA, but if you want to specify a particular value then you can, for example setting the degree of parallel to 4 for the 'Class Build' node, in the above image. Similarly for the in-memory option, this will only be available for nodes where the in-memory option would be applicable. This will be where there is a lot of data processing (preparing data, transforming data, performing specific statistics, etc) and for storing any data that is generated by Oracle Data Mining.

But what if you want to change the default values. You can change these at a global level within the SQL Developer Preferences. Here you can set the default to be used for each of the different types of Oracle Data Mining nodes.

NewImage

I mentioned at the start that I've been able to build 4 machine learning models using Oracle Data Mining on a data set of over 3.5 billion records, all in a couple of seconds. In my scenario Parallel was set to 16 and we didn't use in-memory as we didn't have the licence for it. You can see that machine learning at lighting speed (ish) is possible. This timing is only for building the models, which is the step that consumes the most about of resources and time. When it comes to scoring the data, that is lighting fast. In may scenario, scoring over 300,000 was less than a second, and I didn't use parallel or anything else to speed things up. Because we didn't need to.

Go give it a try!

Monday, August 21, 2017

Scheduling ODMr Workflows in SQL Developer 4.2+

A new feature for Oracle Data Mining (ODM) (part of SQL Developer 4.2) is the ability to schedule an ODM workflow to run a defined time or frequency. This blog post will bring you through the steps need to schedule an ODM workflow using this new feature. The first thing that you need is an ODMr workflow. The following image is a familiar looking one that I typically use to get a very quick demo of how easy it is to build a machine learning workflow. NewImage Just above the workflow worksheet we have a row of icon buttons. In the above image one of these is highlighted by a red box. This is the workflow scheduler. So go ahead on click on it. NewImage In most cases you will want to run the entire workflow. The default option presented to is 'All Nodes'. If you would only like a subset of the nodes to run, you can click-on or select the node in the workflow and then click on the scheduler icon. In our example we are going to run the entire workflow, so select 'All Nodes' from the menu. NewImage The main scheduler window will open. Here you can set the Start Date and time of the first run, what the Repeat frequency is (none, every day, every week or custom) and to End the Repeat (Never, After, On Date). To schedule a once off run of the workflow just set the Date and Time, set the Repeat to 'None' and End Repeat should disappear in this instance. If Repeat was set to another value then you can set a value for End Repeat. Go ahead and run the scheduler by clicking on the OK button. NewImage A Scheduled Jobs window should open that will display the details of the scheduled job. When this job is run in the database, this will be shown in the Workflow Jobs window. Here you can see and monitor the progress of the of the workflow. NewImage and that's it. Nice an simple. But there is a something you needed to be WARNED about. When you schedule a workflow, Oracle Data Miner will lock the workflow. This is to ensure that no changes can be made to the scheduled workflow. This is indicated with the Locked button appearing on the icon menu. If you click on this button to unlock the workflow, it will also cancel your scheduled jobs associated with this workflow. NewImage Also when the scheduled workflow is finished, the workflow will remain locked. So you will have to click on this Locked button to unlock the workflow. There are a few additional advanced features. These can be found by clicking on the 'Advanced...' button in the main scheduler window. The first table displayed allows you to specify if you want an email sent for the different stages of the scheduled job. The second tab allows you to set the Job Priority, Max Failures, Max Run Duration and Schedule Limits. NewImage

Monday, August 7, 2017

Auto enabling APPROX_* function in the Oracle Database

With the releases of 12.1 and 12.2 of Oracle Database we have seen some new functions that perform approximate calculations. These include:

  • APPROX_COUNT_DISTINCT
  • APPROX_COUNT_DISTINCT_DETAIL
  • APPROX_COUNT_DISTINCT_AGG
  • APPROX_MEDIAN
  • APPROX_PERCENTILE
  • APPROX_PERCENTILE_DETAIL
  • APPROX_PERCENTILE_AGG

These functions can be used when approximate answers can be used instead of the exact answer. Yes can have many scenarios for these and particularly as we move into the big data world, the ability to process our data quickly is slightly more important and exact numbers. For example, is there really a difference between 40% of our customers being of type X versus 41%. The real answer to this is, 'It Depends!', but for a lot of analytical and advanced analytical methods this difference doesn't really make a difference.

There are various reports of performance improvement of anything from 6x to 50x with the response times of the queries that are using these functions, instead of using the more traditional functions.

If you are a BI or big data analyst and you have build lots of code and queries using the more traditional functions. But what if you now want to use the newer functions. Does this mean you have go and modify all the code you have written over the years? you can imagine getting approval to do this!

The simple answer to this question is 'No'. No you don't have to change any code, but with some parameter changes for the DB or your session you can tell the database to automatically switch from using the traditional functions (count, etc) to the newer more optimised and significantly faster APPROX_* functions.

So how can you do this magic?

First let us see what the current settings values are:

SELECT name, value 
FROM   v$ses_optimizer_env 
WHERE  sid = sys_context('USERENV','SID') 
AND    name like '%approx%';

NewImage

Now let us run a query to test what happens using the default settings (on a table I have with 10,500 records).

set auto trace on

select count(distinct cust_id) from test_inmemory;

COUNT(DISTINCTCUST_ID)
----------------------
		  1500


Execution Plan
----------------------------------------------------------
Plan hash value: 2131129625

--------------------------------------------------------------------------------------
| Id  | Operation	     | Name	     | Rows  | Bytes | Cost (%CPU)| Time     |
--------------------------------------------------------------------------------------
|   0 | SELECT STATEMENT     |		     |	   1 |	  13 |	  70   (2)| 00:00:01 |
|   1 |  SORT AGGREGATE      |		     |	   1 |	  13 |		  |	     |
|   2 |   VIEW		     | VW_DAG_0      |	1500 | 19500 |	  70   (2)| 00:00:01 |
|   3 |    HASH GROUP BY     |		     |	1500 |	7500 |	  70   (2)| 00:00:01 |
|   4 |     TABLE ACCESS FULL| TEST_INMEMORY | 10500 | 52500 |	  69   (0)| 00:00:01 |
--------------------------------------------------------------------------------------

Let us now set the automatic usage of the APPROX_* function.

alter session set approx_for_aggregation = TRUE;

SQL> select count(distinct cust_id) from test_inmemory;

COUNT(DISTINCTCUST_ID)
----------------------
		  1495


Execution Plan
----------------------------------------------------------
Plan hash value: 1029766195

---------------------------------------------------------------------------------------
| Id  | Operation	      | Name	      | Rows  | Bytes | Cost (%CPU)| Time     |
---------------------------------------------------------------------------------------
|   0 | SELECT STATEMENT      | 	      |     1 |     5 |    69	(0)| 00:00:01 |
|   1 |  SORT AGGREGATE APPROX| 	      |     1 |     5 | 	   |	      |
|   2 |   TABLE ACCESS FULL   | TEST_INMEMORY | 10500 | 52500 |    69	(0)| 00:00:01 |
---------------------------------------------------------------------------------------

We can see above that the APPROX_* equivalent function was used, and slightly less work. But we only used this on a very small table.

The full list of session level settings is:
alter session set approx_for_aggregation = TRUE;
alter session set approx_for_aggregation = FALSE;

alter session set approx_for_count_distinct = TRUE;
alter session set approx_for_count_distinct = FALSE;

alter session set approx_for_percentile = 'PERCENTILE_CONT DETERMINISTIC';
alter session set approx_for_percentile = PERCENTILE_DISC;
alter session set approx_for_percentile = NONE;

Or at a system wide level:

alter system set approx_for_aggregation = TRUE;
alter system set approx_for_aggregation = FALSE;

alter system set approx_for_count_distinct = TRUE;
alter system set approx_for_count_distinct = FALSE;

alter system set approx_for_percentile = 'PERCENTILE_CONT DETERMINISTIC';
alter system set approx_for_percentile = PERCENTILE_DISC;
alter system set approx_for_percentile = NONE;

And to reset back to the default settings:

alter system reset approx_for_aggregation;
alter system reset approx_for_count_distinct;
alter system reset approx_for_percentile;